Thermodynamic Study of NH₄Br and ND₄Br Crystals under Constant High-pressures[†]

Kazuo Watanabe,** Masaharu Oguni, Takasuke Matsuo, Hiroshi Suga,* and Syûzô Seki***

Department of Chemistry and Chemical Thermodynamics Laboratory, Faculty of Science, Osaka University,

Toyonaka, Osaka 560

(Received October 26, 1981)

Heat capacities and volumes of NH₄Br and ND₄Br crystals were measured in the temperature range from 100 to 260 K at several constant pressures up to 110 MPa with a special attention paid to the behaviors around the point of ND₄Br at 66 MPa and 202 K. The experimental results at an atmospheric pressure were in good agreement with the previously reported ones. The δ - γ and δ - β phase transitions were accompanied with expansion of the volume while the γ - β phase transition with contraction. Detailed phase diagram obtained for ND₄Br disclosed that there was no maximum in any branch of the transition lines. The triple point was represented essentially as the point of intersection of the three straight lines. There was no pressure dependence of the total entropy of transition from the δ to β phase. The entropy values can be explained by the mechanism of the order-disorder change in the orientations of NH₄⁺ tetrahedra. The existence of the heat capacity anomaly in the high temperature side of the δ - γ phase transition was discussed as due to the spatial fluctuation of domains of the γ and γ phases. An argument was put forward that the observed δ - γ phase transition was probably superheated. An additional anomalous heat-capacity peak was observed just below the triple point pressure in between the temperatures of the δ - γ and γ - β phase transitions, and explained in terms of the effects of the superheating in the δ - γ phase transition and of the coexistence of the δ and γ phases domains in the crystal.

There have been four phases known to exist in the NH_4Br crystal at the atmospheric pressure.¹⁾ They are named α through δ phases in the order of the high to low temperature in respect of the temperature range of their occurrence. As the pressure increases, the temperature range of the stability of the γ phase becomes small and disappears at the triple point pressure of 160 MPa for NH_4Br and 66 MPa for ND_4Br .^{1,2)}

These phases are distinguished from one another by the differences in the interrelation of orientations of NH₄+ ions and in the relative positions of the ions.³⁾ The α phase has the NaCl structure in which NH₄+ ions are orientationally disordered. The β phase has the CsCl structure with the NH₄+ ions in the state of disorder between two different orientations in the octahedral crystal field. The structure of the γ phase is in the tetragonal system; adjacent NH4+ ions take a parallel orientation along the c axis and an anti-parallel one within the ab plane, and the Br- ions accordingly shift themselves slightly along the c-axis with concomitant shortening of the N-H...Br hydrogen bonds. The δ phase has the same cubic structure as the β phase, but with NH₄+ ions in the parallel ordered state in the orientations.

Two different mechanisms, order-disorder in configurational degrees of freedom and displacement of atoms and ions away from the high symmetry sites, are in general considered as basic atomic processes of phase transitions in ionic crystals. In the transitions among the β , γ , and δ phases there are two competing ordering interactions. A direct octupole-octupole interaction between nearest-neighbor NH₄⁺ tetrahedra energetically favors a parallel ordering realized in the

 δ phase, while an indirect interaction of the tetrahedra through the polarizable Br⁻ ions stabilizes the antiparallel ordering accompanied by the displacement of the Br⁻ ions in the γ phase.

We reported construction of an adiabatic calorimeter working under constant high pressures.⁵⁾ In the present paper we report calorimetric and volumetric studies of the phase transitions in NH₄Br and ND₄Br crystals performed with this apparatus with special attention paid to the behavior around the triple point of ND₄Br. In general the behavior of a substance around the triple point involving the gaseous, liquid, crystalline phases is determined only by the difference in the magnitudes of the free energies for these phases. The γ - β and δ - β phase transitions in the present crystals have been well known from various experimental techniques to be of the λ type.⁶⁻⁹⁾ The behavior around such triple points as associated with phase lines of the λ type was expected to be different from that of the gasliquid-crystal triple points on account of the continuous interrelation among the crystal structures involved.

Experimental

Materials. Crystalline ammonium bromide $\mathrm{NH_4Br}$ (Nakarai Chemical Co. Ltd., special reagent) was purified by sublimation at about 140 °C under vacuum. The powder sample obtained was pressed into pellets of 2 cm in diameter and 0.7 cm in thickness for closer packing in the cell. The mass of the sample used was 37.593 g corresponding to 0.38383 mol.

The sample in the calorimeter cell was pressurized through direct contact with pressure medium, 3-methylpentane, for a uniform hydrostatic pressure. This method is applicable if the sample is insoluble in the liquid. The solubility was checked with a spectroscopic method; NH₄Br was first extracted into water phase from the saturated 3-methylpentane solution, and then the ultraviolet spectra of the aqueous solution was compared with those of the aqueous NH₄Br solutions of known concentration. The amount-of-substance fraction of

[†] Contribution No. 27 from Chemical Thermodynamics Laboratory.

^{**} Present address: Kanzaki Paper Mtg. Co. Ltd., 1-11, Jōkōji-Motomachi, Amagasaki 660.

^{***} Present address: Department of Chemistry, School of Science, Kwansei Gakuin University, Nishinomiya 662.

NH₄Br in the pressure medium was estimated to be less than 10 ppm, indicating that the above method of pressurization caused no serious problem in the heat capacity measurements.

Ammonium- d_4 bromide (ND₄Br) sample was prepared by recrystallizing the purified NH₄Br crystals from deuterium oxide (Nakarai Chemical Co. Ltd., 99.8%) solution three times. Deuterium exchange ratio of the powder sample was found by high resolution ¹H-NMR method to be 99.5%. The calorimeter cell contained 35.418 g (0.34734 mol) of the sample in pellet form. All the procedures of the preparation and handling were carried out in the atmosphere of dry nitrogen gas.

The densities of NH₄Br and ND₄Br crystals at room temperature were calculated from data of the mass and volume of the pellet. The volume was obtained by measuring the pellet sizes with a micrometer.

Calorimetric Procedures. The calorimeter cell was loaded with the sample at room temperature and screwed up at liquid nitrogen temperature for tight sealing. Setting-up of the cell in the cryostat and introduction of 3-methylpentane into the high-pressure system were carried out in the same manner as described already.⁵⁾

A series of heat capacity measurement at several constant pressures was performed in the intermittent heating mode with the temperature step of 2—3 K. The volume of the sample at each temperature and pressure was calculated by using the compressibility and expansivity data of 3-methylpentane given in the previous paper.⁵⁾

Results and Discussion

Heat Capacities at an Atmospheric Pressure. Heat capacity values of NH₄Br and ND₄Br crystals at an atmospheric pressure are shown in Figs. 1 and 2, respectively, together with the previously reported data obtained by using an ordinary adiabatic calorimeters. 10-12) They are in good agreement within the inaccuracy of 1% except at temperatures just around the phase transition points. In view of the adverse circumstances in determining the heat capacity values with the present calorimeter, this agreement would be satisfactory. Evidently, unfavorable factors incurred

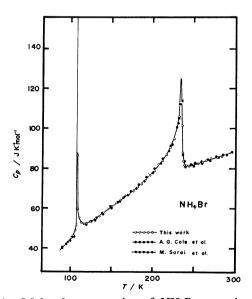


Fig. 1. Molar heat capacity of NH₄Br crystal at an atmospheric pressure.

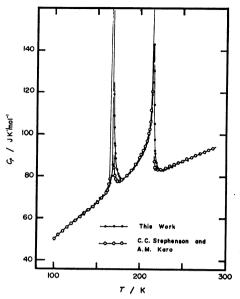


Fig. 2. Molar heat capacity of ND₄Br crystal at an atmospheric pressure.

by the high pressure were overcome in the present apparatus. It is now possible to measure high-pressure heat capacities with almost the same accuracy as with the ordinary adiabatic calorimeter under the atmospheric pressure.

Table 1. The entropies of the phase transitions in NH₄Br and ND₄Br crystals

Substance	Ref.	$\frac{\Delta_{\delta}^{\gamma}S}{\text{J }\text{K}^{-1}\text{mol}^{-1}}$	$\frac{\Delta_{\gamma}^{\beta}S}{\text{J }K^{-1}\text{mol}^{-1}}$	ΔβS J K ⁻¹ mol ⁻¹
	(10	1.1	3.0	4.1
NH₄Br	11	1.1	3.0	4.1
	This work	1.2	2.6	3.8
ND ₄ Br	ſ 12			5.4
	This work			5.0

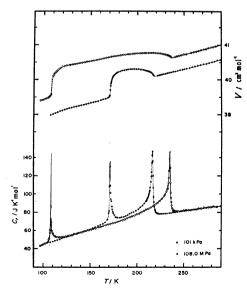


Fig. 3. Molar heat capacity and molar volume of NH₄Br at 0.101 (○) and 108.0 MPa (●).

Table 2. Molar heat capacity and molar volume of NH₄Br

-											
T	c_p	V	T	c_p	ν		c_p	<u> </u>		c_p	<u>v</u>
K	JK ⁻¹ mol ⁻¹	cm mol-1	K	J K ⁻¹ mol ⁻¹	cm mol-1	K	J K ⁻¹ mol	-1 cm mol-1	K	J K ⁻¹ mol	cm ³ mol ⁻¹
			217.02	87.04	40.770	232.01	78.70	40.179	181.6	9 74.03	40.231 40.252
P	= 101		219.46	88.78	40.765	234.10			183.7 185.8	9 74.39	40.252 40.262
96.81	42.98	39.395 39.413	221. 83 224.15	90.27 92.51	40.763 40.752	238.2		40.221	187.9	7 76.03	40.270
98.78 100.71	43.96 44.96	39.434	226.37	94.72	40.739	240.6		40.228 40.247	190.0 192.0		40.283 40.291
102.49	45.47	39.452	228.51	97.50	40.731	243.16 245.64		40.262	194.1		40.291
104.13 105.29	46.30 47.07	39.468 39.483	219.89	88.88	40.768	248.1	81.33	40.278	196.3		40.294
105.93	49.89	39.494	222.40	90.87	40.760 40.747	250.37 252.82		40.294 40.309	198.7 201.1		40.294 40.294
106.44	51.44 51.26	39.507 39.522	224.91 227.41	93.04 95.97	40.737	255.B	82.27	40.330	203.6	0 85.50	40.283
106.84 107.17	51.60	39.533	229.78	99.27	40.724	258.86 261.83	82.74 83.14		205.8	5 87.28	40.273
107.52	55.37	39.554	231.15	102.61 103.29	40.713 40.710	264.8		40.398	212.1	3 97.30	40.231
107.87 108.19	60.79 86.31	39.577 39.634	231.62 232.02	105.18	40.705	267.89	84.23	40.416	212.7		40.223
108.47	219.85	39.793	232.34	105.63	40.703	270.99 274.08		40.439 40.450	213.2 213.7		40.221 40.213
108.76	67.41	39.970 40.023	232.67 233.00	107.42 108.60	40.697 40.695	277.10		40.479	213.7		40.208
109.09 109.42	59.67 58.16	40.056	233.32	111.72	40.692	280.26		40.502	214.7	1 111.35	40.200
109.78	57.09	40.080			40 (03	283.34 286.40		40.523 40.554	215.0 215.4	5 115.13 0 122.53	40.192 40.184
110.19	57.04 55.39	40.103 40.129	232.76 233.11	106.04 109.44	40.697 40.697	289.44	86.70	40.572	215.7		40.171
110.68 111.23	54.51	40.156	233.46	112.27	40.690	292.47	87.45	40.596 40.617	216.0	7 148.15	40.155
111.79	53.88	40.174	233.79	117.54	40.690	295.53 298.55		40.643	216.3 216.5		40.150 40.132
112.41	53.47 52.92	40.197 40.221	234.14 234.48	125.37 138.90	40.679 40.761	••		M Do	216.8		40.119
113.18 114.16	52.53	40.247	234.79	146.24	40.671	-	= 108.0		217.1		40.116
115.35	52.28	40.281	235.10	128.80	40.661 40.658	107.56 110.56		38.985 39.014	217.4 217.9		40.111 40.111
116.64 117.93	52.20 52.12	40.307 40.330	235.40 235.72	112.34 101.36	40.653	112.60		39.040	218.1		40.114
119.52	52.29	40.359	236.03	95.69	40.645	115.03	49.25	39.064	213.5		40.119
121.58	52.66	40.380	236.35 236.67	91.52 87.70	40.645 40.645	117.53 119.98		39.095 39.118	219.0 219.5		40.114 40.109
124.23 127.06	53.33 53.95	40.398 40.419	236.99	84.51	40.645	122.44		39.139	220.0	7 EQ.20	40.109
128.14	54.31	40.419	237.32	84.60	40.648	124.95		39.160	220.6		40.109
130.58	54.91 56.03	40.432	237.64 237.98	83.55 83.52	40.645 40.645	127.44 129.95		39.181 39.197	221.1 222.4		40.103 40.119
132.98 135.51	56.19	40.458	238.43	82.48	40.651	132.54	55.30	39.217			
138.15	57.37	40.471	238.96	81.63	40.653	135.09	56.09	39.233	207.7		40.262 40.257
140.77 143.36	57.93 58.75	40.484 40.499	239.50 240.04	81.81 81.84	40.648 40.648	137.63 140.18		39.249 39.267	209.1 209.8		40.241
145.93	59.59	40.510	240.58	80.99	40.656	142.75	58.74	39.280	210.3	8 93.71	40.239
148.47	60.49	40.520 40.536	241.25 242.19	81.61 81.23	40.661 40.671	145.30 147.82		39.296 39.316	210.8 221.3		40.236 40.231
150.99 153.53	61.02 62.04	40.549	243.26	80.78	40.679	150.42		39.332	211.5		40.231
156.10	62.55	40.562	244.33	81.32	40.687	153.09		39.350	212.3	9 98.81	40.223
158.70	63.69 64.23	40.580 40.598	242.13	80.84	40.671	155.74 158.36	63.60 64.95	39.368 39.379	212.8 213.2		40.226 40.221
161.33 163.94	65.11	40.598	242.13	81.12	40.687	160.97	66.15	39.405	213.6	8 104.02	40.215
166.53	66.17	40.627	247.07	81.55	40.703	163.55	67.30	39.426	214.0	9 107.20	40.210
169.10	66.84 67.19	40.643 40.656	249.77 252.46	82.02 81.73	40.721 40.739	166.11 168.47		39.447 39.470	214.7 215.1		40.202 40.192
171.65 174.19	67.99	40.664	252.46	82.48	40.755	169.81	78.94	39.499	215.4	4 124.09	40.184
176.71	68.61	40.679	257.81	82.75	40.773	170.26		39.517	215.7	6 134.17	49.171
179.21 181.75	69.53 70.72	40.690 40.700	260.48 263.14	83.34 83.46	40.794 40.810	170.60 170.91		39.546 39.692	216.0 216.3		40.155 40.142
184.31	71.48	40.710	265.79	84.17	40.833	171.20	130.22	39.814	216.	10 135.99	40.132
186.88	72.34 73.60	40.724 40.724	268.43	84.35	40.851	171.54		39.874 39.916	217.0		40.122
189.46 192.03	73.60	40.724	271.06 273.70	85.25 85.07	40.867 40.88€	171.88 172.22		39.916	217.3 217.6		40.111 40.111
194.59	75.55	40.742	276.36	85.51	40.905	172.65	92.28	39.999	218.0	91.32	40.116
197.13	76.67 77.94	40.747 40.755	279.01	85.55	40.929	173.18		40.043	218.4		40.114
199.65 202.18	78.77	40.760	281.64 284.28	86.53 85.75	40.945 40. 9 63	173.71 174.24		40.072	218.0 219.3		40.119
204.71	80.18	40.755				174.86	78.83	40.116	219.0	6 81.52	40.109
207.31	81.85 83.05	40.765 40.765	224.98	78.39 78.40	40.132	175.90 177.0			220.6 220.6		40.109 40.103
209.39 211.96	83.88	40.765	226.25 228.02	78.40	40.142	178.00			220.		40.106
214.52	85.32	40.768	230.19	78.59	40.163	179.59			221.		40.109
											

Agreement between the present and previous data is found also in the entropies of the transition as shown in Table 1.^{10–12}) The difference (up to 8%) would not be significant because the entropy values depend primarily upon choice of the baseline which one has to assume in the wide temperature range of occurrence of the phase transition.

Heat Capacities under Pressures. Figure 3 shows the results of molar heat capacity and molar volume of NH₄Br at 0.101 and 108.0 MPa. The numerical values are collected in Table 2. Application of the pressure increased the δ - γ phase transition temperature from 108.5 K to 170.9 K and decreased the γ - β one from 234.8 K to 216.4 K. The transition temperatures observed at 108.0 MPa are in good accordance with those on the phase diagram reported before. ^{13,14} The slope of the transition line, d $T_{\rm tr}/{\rm d}\rho$, is 0.578 K MPa⁻¹

for the δ - γ phases and $-0.171~\rm{K}~\rm{MPa^{-1}}$ for the γ - β phases.

Figure 4 shows the molar heat capacity and molar volume of ND₄Br at 0.101, 50.0, and 111.0 MPa in the temperature range of 130 to 260 K. The numerical values are given in Table 3. The two phase transitions, δ - γ and γ - β , observed at 168.5 and 215.5 K at 0.101 MPa, got close in temperature to each other with the increasing pressure to take place at 194.3 and 206.0 K at 50.0 MPa, and coalesced into one, direct transformation from δ to β phases, around 67 MPa at 201.2 K. The transition temperature was 205.3 K at 111.0 MPa.

The δ - γ phase transition was accompanied with a large expansion in volume, and had a increasingly larger premonitory region on the low temperature side as the pressure was increased. The slope of the transition line, $dT_{\rm tr}/d\rho$, was 0.517 K MPa⁻¹. The

Table 3. Molar heat capacity and molar volume of $\ensuremath{\text{ND_4Br}}$

T	c_p	v	T	c_p	ν	T	c_p	V	T	c_p	γ
<u></u>	J K ⁻¹ mol		<u></u>	J K ⁻¹ mol	cm ³ mol ⁻¹	K	J K ⁻¹ mol ⁻¹	cm ³ mol ⁻¹	K	J K ⁻¹ mol	i cm ³ mol ⁻¹
			164.61	73.39	39.454	200.11		40.177	191.48	···	39.741
	? = 101	k Pa 39.351	168.16 171.16	74.96	39.47 9 39.512	200.50	107.25	40.185	192.86 194.17	98.31	39.738 39.755
128.60 131.64	60.35 61.40	39.400	175.16	76.69 79.17	39.555	201.26	111.96	40.191	195.47	105.09	39.773
134.64 137.60	61.43 63.52	39.426 39.440	178.61 181.68	81.25 84.06	39.558 39.590	201.65 202.03		40.191 40.180	196.76 197.72		39.791 39.809
140.71	64.21	39.460	184.07	85.68	39.607	202.42		40.171 40.165	198.35	122.25	39.822
143.96 147.17	65.51 66.74	39.469 39.498	186.09 187.43	88.43 90.85	39.630 39.647	202.80 203.18	115.64	40,157	198.85	133.63	39.835 39.842
150.40 153.58	67.92 69.51	39.506 39.503	188.09 188.76	91.47 92.28	39.650 39.656	203.56 203.93		40.148 40.139	199.60 199.96		39.854 39.866
156.77	70.69	39.521	189.42 190.08	93.14	39.664	204.28	192.82	40.119	200.32	180.35	39.882
159.92 162.01	72.78 73.73	39.549 39.567	190.74	94.42 96.29	39.664 39.670	204.62 204.97	134.18	40.030	201.00	152.92	40.010 40.134
162.87 163.55	74.80 75.41	39.572 39.578	191.29 191.72	96.87 100.01	39.687 39.711	205.34 205.73	103.26 93.60	40.014 40.007	201.37 201.74		40.142 40.141
164.11	75.87	39.584	192.16	100.16	39.742	206.25	87.89	40.010	202.12	116.94	40.123
164.52 164.93	76.07 76.81	39.584 39.584	192.59 1 93.4 5	102.34 108.86	39.762 39.806	206.90 207.55	83.28	40.018 40.027	202.86 203.21	203.17	40.107 40.082
165.34 165.75	77.07 77.41	39.587 39.584	193.88 194.26	131.08 290.67	39.834 39.972	208.21 208.86		40.027 40.030	203.56 203.94		40.052 40.040
166.16	78.67	39.584	194.62	131.04	40.119	209.85	81.32	40.033	204.33	95.10	40.043
166.57 166.98	79.22 80.03	39.584 39.587	195.02 195.45	114.66 104.59	40.165 40.194	213.00 216.14	80.66	40.067 40.076	204.85 205.50		40.048 40.048
167.39 167.79	80.52 85.44	39.601 39.598	195.88 196.42	103.65 99.60	40.208 40.229	218.41 221.64		40.079 40.171	206.16 206.98		40.049 40.050
168.55	261.97	39.739	197.07	97.25	40.246	224.85	81.86	40.183	207.96	81.34	40.047
168.89 1 69. 25	192.52 119.13	39.898 39.995	197.72 198.37	95.79 95.05	40.260 40.272	228.04 231.22	82.61 82.51	40.237 40.237	210.09 213.35	80.88 80.77	40.049 40.070
169.64	108.63	40.047	199.18 200.15	95.64	40.278	228.34	82.40 82.69	40.099	214.58 217.82	80.76	40.069
170.03 170.42	95.55	40.131	201.12	96.65 100.42	40.272 40.269	231.47 234.58	83.19	40.183	221.05	81.25	40.069 40.083
170.82 171.22	94.50 90.74	40.145 40.171	201.82 202.25	98.59 99.35	40.269 40.269	237.98 241.68	84.00 84.53	40.209 40.226	224.26	81.70	40.100
171.62	88.37	40.191	202.68 203.10	101.71	40.275	245.36	85.63	40.240		9 = 65.0	
172.31 173.31	85.83 83.39	40.217 40.249	203.53	102.97 106.51	40.272	249.04 252.68	86.53 85.30	40.257 40.275	162.38 165.98	72.09 73.56	39.304 39.384
174.48 175.81	81.15 79192	40.286 40.301	203.95 204.37	109.43 114.75	40.260 40.246	F	= 62.0	M Pa	169.54 173.08	75.13	39.453 39.522
177.48	78.94	40.318	204.79 205.20	123.13	40.231	162.70	71.47	39.285	176.57	79.71	39.554
180.46 184.40	78.82 79.99	40.326 40.344	205.59	139.27 189.80	40.211 40.185	166.30 169.85	73.41 75.37	39.285 39.411	180.02 183.43	82.05 85.08	39.580 39.609
188.32 192.20	81.57 83.26	40.358 40.361	205.97 206.35	226.21	40.142	173.37 176.86	75.95 79.61	39.475 39.515	186.81 190.15	88.09 93.01	39.646
196.04	85.32	40.355	206.77	136.07 106.11	40.105 40.082	180.31	82.38	39.546	192.47	97.69	39.701
199.80 203.18	88.33 90.41	40.358 40.370	207.30 207.94	92.88 86.99	40.076 40.076	183.72 187.10	85.38 89.75	39.578 39.595	193.81 195.11	100.70 104.31	39.733 39.741
205.75 207.99	93.05 95.95	40.358 40.347	208.59	83.87	40.082	190.44 193.73	94.04 100.68	39.650 39.693	196.40 197.68	108.70	39.756 39.773
209.27	98.05	40.349	209.24 209.89	82.81 81.59	40.093 40.102	196.02	108.33	39.722	198.50	120.88	39.790
209.80	98.60 99.91	40.352 40.347	210.87 212.82	81.54 81.28	40.102 40.122	196.99 197.63	112.52 117.65	39.731 39.745	198.88 199.26		39.802 39.813
210.64 211.06	100.53	40.347 40.347	215.72	81.20	40.139	198.26 198.76	122.76 129.53	39.762 39.780	199.63 199.99	138.86	39.831
211.48	102.98	40.341	218.94 222.15	81.13 81.50	40.157 40.180	199.13	135.64	93.791	200.35	168.60	39.842 39.859
211.90 212.32	104.30 106.51	40.326 40.324	224.91 228.08	81.46 82.17	40.188 40.211	199.50 199.86	156.06 175.84	39.803 39.849	200.70 201.03	221.42 236.99	39.879 40.021
212.73 213.15	108.56 110.87	40.318 40.309	231.56	82.46	40.231	200.21 200.57	187.74 138.64	39.964	201.39	116.10	40.139
213.56	114.51	40.303	235.33 239.09	83.43 84.89	40.249 40.266	200.93	173.72	40.093	202.13	124.70 153.61	40.121 40.110
213.97 214.38	118.84 124.95	40.298 40.289	242.83 246.54	84.90 85.50	40.289 40.315	201.29 201.67	134.52 106.34	40.111 40.113	202.48 202.82	225.24 168.74	40.084
214.78	134.91	40.289	249.01	85.89	40.329	202.06	107.33 116.83	40.111	203.19 203.57	118.47	40.015
215.18 215.58	142.76 143.05	40.254	P	= 57.0	M Pa	202.81	127.92	40.093	203.96		40.012 40.018
215.99 216.39	130.35 113.95	40.226	155.58	69.49	39.264	203.18 203.53	156.36 227.73	40.076 40.044	204.35	89.97	40.021
216.80	105.09	40.217	162.05	72.25	39.351	203.87	162.97	40.018	206.01	84.09	40.023
217.22 217.65	97.56 92.08	40.208 40.203	165.59 169.09	73.94 75.02	39.457 39.486	204.24 204.75	114.37 87.78	40.001 39.998	207.00 207.98	81.98	40.029 40.029
218.07 218.49	90.84 87.92	40.214	172.56	77.11 79.37	39.512 39.538	205.41 206.06		39.998 40.004	210.10 213.36	80.81	40.041
218.91	86.42	40.223	175.99 179.39	81.61	39.558	206.72	82.83	40.013	216.61	80.94	40.055
219.34 219.87	84.71 84.71	40.229 40.220	182.75 186.07	84.99 87.94	39.587 39.601	207.37 208.69	80.79 80.62	40.010 39.995	219.85 223.06	81.57	40.069 40.090
220.51 221.46	82.49 83.81	40.226	188.25 189.23	91.12 92.33	39.604	211.30 212.15	80.66 80.22	40.007 39.961	226.26	82.15	40.118
223.68	82.85	40.223	190.21	94.40	39.598 39.607	214.92	80. 66	40.001		° = 66.0	
226.91 230.06	82.77 83.26	40.277 40.298	191.02 191.68	95.89 97.45	39.618 39.630	217.83 220.90	80.64	40.042 40.073	164.76 168.33		39.309 39.387
233.49	83.78	40.324	192.33	98.57	39.641	224.11 227.31	81.60	40.088	171.86	76.65	39.462
237.24	84.39 85.16	40.358 40.387	192.99 193.64	100.08	39.659 39.672	230.49	82.51	40.122	175.36 178.99	81.40	39.505 39.546
244.66 248.34	86.94 86.90	40.410	194.29 194.94	103.97 106.28	39.682 39.696	233.66 236.82	82.75 83.66	40.145 40.168	182.60 185.98	84.22	39.592 39.603
252.00	86.27	40.483	195.59	109.27	39.705	p	= 63.5		189.33	91.91	39.632
255.65 259.29	87.73 88.18	40.522 40.562	196.23 196.74	113.17 117.09	39.722 39.736	161.35	71.89	39.340	191.98 193.65	99.38	39.666 39.687
P	= 50.0	M Pa	197.12 197.49	125.02 160.87	39.811 39.846	164.96 168.54		39.394 39.460	194.95 196.24	103.18	39.704 39.721
144.70	65.42	39.236	197.84	249.85	39.964	172.07	76.91	39.518	197.53	114.68	39.741
147.73 150.74	66.36 67.17	39.285 39.325	198.19 198.57	117.54 111.94	40.076 40.108	175.57 179.03	81.14	39.552 39.576	198.48 198.98	126.98	39.756 39.767
153.89 157.39	68.81 69.96	39.365 39.411	198.95 199.34	109.03 104.16	40.131 40.154	182.46 185.84		39.610 39.652	199.36 199.73	129.44	39.784 39.799
161.02	71.51	39.434	199.73	104.13	40.162	189.19	91.77	39.684	200.09	151.81	39.816
										· · · · · · · · · · · · · · · · · · ·	

Table 3. (Continued)

200.80 230.09 39.856 200.96 229.75 39.833 173.17 76.99 39.282 201.08 709.14 39.954 201.22 237.67 39.868 175.94 78.79 39.313 201.38 201.38 122.11 40.009 201.43 246.06 39.911 178.60 79.98 39.336 201.76 114.71 40.012 201.03 96.62 39.940 181.84 82.89 39.400 202.14 124.76 40.003 202.22 90.07 30.951 184.55 84.55 39.431	226.98 229.96 232.98 237.30 241.66	C _p J K ⁻¹ mol ⁻¹ 82.58 82.91 83.25	39.958 39.978
200.45 170.53 39.831 200.61 174.75 39.316 170.39 74.96 39.264 200.80 230.09 39.856 200.96 229.75 39.833 173.17 76.99 39.282 201.08 709.14 39.954 201.22 237.67 39.868 175.94 78.79 39.313 201.38 122.11 40.009 201.43 246.06 39.911 178.68 79.98 39.336 201.76 114.71 40.012 201.83 96.62 39.940 181.04 82.89 39.400 202.14 124.76 40.003 202.22 90.07 39.951 184.55 84.55 39.431	229.96 232.98 237.30 241.66	82.91 83.25	
201.08 709.14 39.954 201.22 087.67 39.868 175.94 78.79 39.313 201.38 122.11 40.009 201.43 246.06 39.911 178.68 79.98 39.336 39.336 201.76 114.71 40.012 201.83 96.62 39.940 181.04 82.89 39.400 202.14 124.76 40.003 202.22 90.07 30.951 184.55 84.55 39.431	232.98 237.30 241.66	83.25	39.978
201.38 122.11 40.009 201.43 246.06 39.911 178.60 79.98 39.336 201.76 114.71 40.012 201.83 96.62 39.940 181.04 82.89 39.400 202.14 124.76 40.003 202.22 90.07 39.951 184.55 84.55 39.431	237.30 241.66		
201.76 114.71 40.012 201.83 96.62 39.940 181.84 82.89 39.400 202.14 124.76 40.003 202.22 90.07 39.951 184.55 84.55 39.431 2	241.66		39.967
202.14 124.76 40.003 202.22 90.07 39.951 184.55 84.55 39.431		84.18	39.986
		84.94	40.065
	244.99	85.78	40.099
	248.30	86.56	40.128
	251.35	86.79	40.134
	254.49	86.94	40.168
	257.67	87.75	40.185
	260.84	88.39	40.240
	264.09	88.18	40.272
206.90 83.41 39.980 211.60 80.31 40.023 199.67 112.56 39.590			
	191.95	92.12	39.506
	193.62	94.21	39.523
	194.95	97.00	39.541
	196.05	98.80	39.552
	197.04	101.55	39.564
	197.81	103.36	39.572
	198.24	103.39	39.578
	198.68	106.44	39.584
	199.11	107.49	39.587
	199.58	109.39	39.592
	199.97	110.80	39.598
	200.40	112.58	39.607
	200.83	115.98	39.616
	201.26	117.48	39.624
	201.68	121.34	39.630
	202.11	123.84	39.636
	202.53	123.06	39.639
	202.95	132.53	39.650
	203.36	141.11	39.662
	203.77	150.51	39.679
	204.18	165.87	39.693
	204.57	194.38	39.708
	204.94	291.32	39.722
	205.26	467.34	39.762
	205.62	120.77	39.808
	06.05	92.40	39.811
	206.49	87.28	39.817
	06.93	86.64	39.823
200.26 153.15 39.805 167.58 74.08 39.214 224.04 82.21 39.935 2	07.37	84.10	39.826

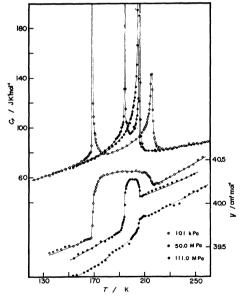


Fig. 4. Molar heat capacity and molar volume of ND₄Br at 0.101 (○), 50.0 (⊕), and 111.0 MPa (●).

 γ - β transition, accompanied by the contraction of the volume, got sharper with the increasing pressure. The slope was given as $-0.190~\rm K~MPa^{-1}$. Both slopes of the transition lines changed slightly by deuteration. The deuteration has the same effect on the γ - β transition temperature as Br substitution has in the mixed crystal NH₄Cl_xBr_{1-x}.¹⁵⁾ The heat capacities of the β phase above ca. 220 K and the δ phase below ca. 150 K did not depend on the pressure. This is related to another

experimental fact that the volume expansivity is independent of the temperature as required by the thermodynamic relation $(\partial C_P/\partial p)_T = -T(\partial^2 V/\partial T^2)_P$.

Figures 5(a)—(f) shows the temperature dependence of the molar heat capacity and molar volume at the constant pressures (given in the diagram) around the triple point. Those values are tabulated in Table 3. There was another heat capacity anomaly at 57.0 MPa and 62.0 MPa between the temperatures of two phase transitions described above, though the corresponding volume change was too small to be detected. As the pressure increased up to 63.1 MPa to 65.0 MPa, this anomaly overlapped with and merged into the δ - γ phase transition. At 66.0 MPa the heat capacity peak due to the γ - β transition at 202.1 K became quite small, indicating that a very small part of the crystal underwent the transition from the γ to β phases and that most from the δ to β phases. Heat capacity and volume curves at 67.0 MPa were essentially the same as those at 111.0 MPa.

The phase transition temperatures taken as the temperatures of the heat capacity peaks are plotted as a function of pressure as open circles in Fig. 6 where the dashed line stands for the result derived from a dilatometric study by Stevenson.¹⁾ The present result indicates, in contrast to the previous one, that there is no maximum in any one branch of transition lines and the triple point is represented essentially as the point of intersection of the three straight lines. Absence of an exact triplet point in a very close look would be connected with a superheating effect in the δ - γ phase transition and will be discussed later.

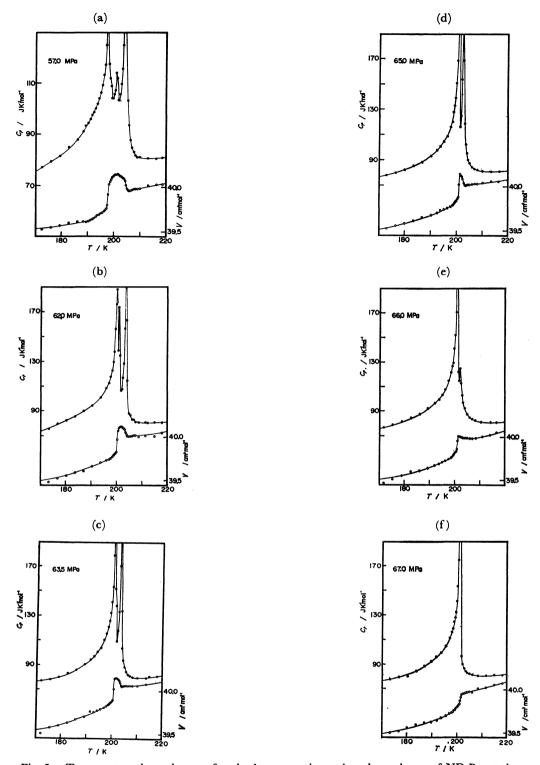


Fig. 5. Temperature dependences of molar heat capacity and molar volume of ND₄Br at the pressures around the triple point.
(a): 57.0 MPa, (b): 62.0 MPa, (c): 63.5 MPa, (d): 65.0 MPa, (e): 66.0 MPa, (f): 67.0 MPa.

Pressure Dependence of the Entropy of the Transition. The excess entropy involved in the successive two transitions for NH₄Br at 0.101 and 108.0 MPa are shown as functions of the temperature in Fig. 7. Here the entropy values were computed by assuming a baseline that joins smoothly the heat capacity curves outside the transition region. The total entropy change

associated with the δ - γ - β phase transitions was estimated to be (4.0 \pm 0.2) J K⁻¹ mol⁻¹.

Figure 8 shows temperature dependence of the entropies of transition in ND₄Br at 0.1, 50.0, and 111.0 MPa and Fig. 9 at six pressures around the triple point. Table 4 lists the total entropy of transition from δ to β phases at all the pressures measured on ND₄Br. There

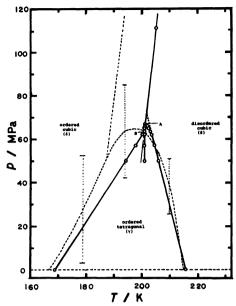


Fig. 6. Phase diagram of ND₄Br crystal as taken from the temperature of heat capacity peak. Previous data by R. Stevenson¹⁾ are represented by dotted lines and error bars.

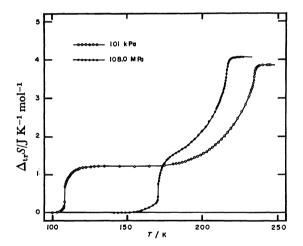


Fig. 7. Temperature dependence of the entropy of $\delta - \gamma - \beta$ phase transition in NH₄Br.

—○—: 0.101 MPa, ———: 108.0 MPa.

is no pressure dependence in these values. The values can be explained in terms of the order-disorder mechanism in the orientational degree of freedom of NH₄⁺ ions.

Molecular Excitation in the δ Phase. The entropies of transition had a very similar temperature dependence in the δ phase for the five isobaric measurements ranging from 57.0 to 67.0 MPa, as shown in Fig. 15. Correspondingly, the excess heat capacity (ΔC_p) vs. temperature curves in the relevant temperature and

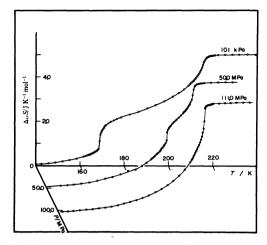


Fig. 8. Temperature dependence of the entropy of δ-γ-β phase transition in ND₄Br.

——: 0.101 MPa, ——: 50.0 MPa, ——: 110.1 MPa.

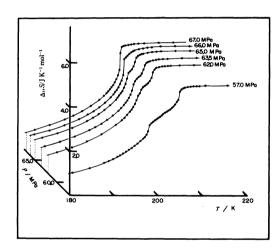


Fig. 9. Temperature dependence of the entropy of δ-γ-β phase transition in ND₄Br at six constant pressures around the triple point.

pressure region were practically independent of pressure as plotted in Fig. 10. It is to be noted here that the crystal transformed from the δ to γ phases below 66.0 MPa and from the δ to β phases at 67.0 MPa. These facts mean that the same process develops in the δ phase irrespective of the phases (γ or β) stable above the transition. This process is considered primarily to be the disordering of the orientation of NH₄+ tetrahedra in the CsCl lattice, leading to the β phase. The δ - γ phase transition immediately below the triple point pressure therefore takes place between the cubic and tetragonal phases in the stages of low order parameters of the orientational arrangement of NH₄+ ions.

Table 4. Pressure dependence of the entropy of δ - γ - β phase transition in ND₄Br crystal

P MPa	0.101	50.0	57.0	62.0	63.5	65.0	66.0	67.0	111.0	
$\frac{\Delta_{g}^{g}S}{\text{J}\mathbf{K}^{-1}\text{mol}^{-1}}$	5.00	4.87	4.94	4.86	4.88	4.91	5.00	4.88	4.96	

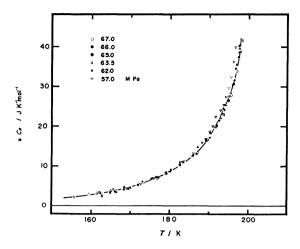


Fig. 10. Pressure and temperature dependences of the excess heat capacity due to the δ - γ or δ - β phase transition in ND₄Br crystal at around the triple point pressure.

Discussion on the Coexistence of the γ and δ Phases Domains. The δ - γ phase transition is of the first-order in which the entropy and volume undergo discontinuous change at the transition temperature. This is quite reasonable in view of the fact that the transition occurs between the parallel ordered cubic and the anti-parallel ordered tetragonal phases and that it can not proceed continuously as the homogeneous transition from one phase to the other from the viewpoint of crystal symmetry.

The heat capacity curve at 0.101 MPa in Fig. 1, however, shows a large post-transitional effect. The appearance of such an anomaly in a first-order transition as in the present case can be attributed to the coexistence of the domains of the δ and γ phases around the transition point. Actually the temperature dependence of the molar fraction of the δ phase calculated from the changes in entropy and volume associated with the transition can be explained by the spatial fluctuation of the domains as follows. ¹⁶⁻¹⁸⁾

Let x be the molar fraction of the δ phase, N the number of domains whose size is assumed to be the same throughout the crystal and G_{δ} and G_{γ} the free energies of the bulk δ and γ phases, respectively. Then the free energy of the crystal is, disregarding their interfacial energies, expressed by

$$G = [(1-x)G_7 + xG_b] + NkT[x \ln x + (1-x) \ln (1-x)].$$
 (1)

Minimization of the free energy at constant N and T gives the molar fraction

$$x = \frac{\exp\{-(G_{\delta} - G_{\gamma})/NkT\}}{\exp\{-(G_{\delta} - G_{\gamma})/NkT\} + 1}.$$
 (2)

Using the experimental values of $1.22 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ for the total entropy of transition and $108.5 \,\mathrm{K}$ for the transition temperature in NH₄Br at 0.101 MPa, $(G_\delta - G_\gamma)$ can be approximated by the form $1.22 \,(T/\mathrm{K} - 108.5) \,\mathrm{J \, mol^{-1}}$. If one assumes that a single domain contains $6^3 \,(=216) \,\mathrm{NH_4^+}$ ions, the temperature dependence of the molar fraction x could be calculated as drawn with a broken line in Fig. 11.

Comparison of the calculated and the experimental values shows that the heat capacity anomaly described

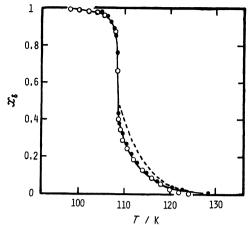


Fig. 11. Mole fraction of δ phase vs. temperature relation in the δ - γ phase transition of NH₄Br crystal at an atmospheric pressure.

————: Derived from the data of entropy, ————: from the data of volume, -----: calculated by use of the Eq. 2.

above is reproduced by this model of spatial fluctuation of δ and γ phases domains. The number of domains in the δ phase actually changes depending on the temperature and the pre-history of the sample, and the interfacial energy should be represented in the expression for the sample free energy. This will be discussed in the subsequent paper.

Superheating of the δ - γ Phase Transition. Superheating is possible in principle in the first-order phase transition, though not found frequently in contrast to supercooling. An evidence for the superheating in the δ - γ phase transition could be given by the consideration of the Gibbs free energies for the δ and γ phases. By way of an example the following discussion is established by the use of the calorimetric data at 50 MPa for ND₄Br. The free energies for the δ and γ phases on the basis of that for the β phase would be written down according to the Landau theory of phase transitions of the second kind as follows;

$$G(\eta^2) = G_{\beta} + \frac{a}{2} (T - T_0) \eta^2 + \frac{b}{4} \eta^4 + \frac{c}{6} \eta^6, \qquad (3)$$

and

$$G(\xi^2) = G_\beta + \frac{a'}{2} (T - T_0') \xi^2 + \frac{b'}{4} \xi^4 + \frac{c'}{6} \xi^6, \tag{4}$$

where η and ξ are the order parameters describing the δ - β and the γ - β phase transitions, respectively, and G_{β} the free energy for the β phase. With coefficients a, b, c, T_0 , a', b', c', and T_0' determined appropriately, the problems of which phase is stable at a given T and where the δ - γ phase transition takes place can be solved by the comparison between $G(\eta^2)$ and $G(\xi^2)$.

by the comparison between $G(\eta^2)$ and $G(\xi^2)$. The coefficients a, b, c, and T_0 were derived by the extrapolation from those at 111.0 and 67.0 MPa at which the δ phase transformed directly into the β phase. The coefficients at the both pressures, 111.0 and 67.0 MPa, were obtained by use of the two equations;

$$\Delta_{\rm tr}S(T) = S_0 - \frac{a}{2}\eta^2, \tag{5}$$

and

$$a(T - T_0) + b\eta^2 + c\eta^4 = 0, (6)$$

where S_0 is the total entropy of the transition. The relation (5) connected with the experimental data of excess heat capacities yielded the temperature dependence of the order parameter, and the least-squares fit of the relation (6) to the T dependence of η^2 determined the coefficients at the respective pressure values. The coefficient values a', b', c', and T_0' were derived, using relations similar to Eqs. 5 and 6 with the order parameter ξ^2 , from the experimental data at 50.0 MPa of the excess heat capacities associated with the γ - β phase transition.

Figure 12 shows the temperature dependence of the order parameters η^2 and ξ^2 with the coefficients thus

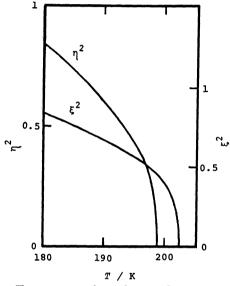


Fig. 12. Temperature dependences of the order parameters for γ and δ phases of ND₄Br at 50 MPa. The order parameter ξ is associated with the γ - β phase transition and η with the δ - β phase transition.

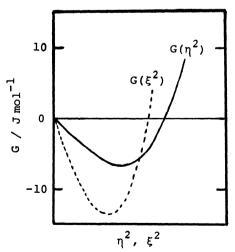


Fig. 13. Gibbs free energy against order parameter curves for the γ and δ phases at 194.3 K and 50 MPa. 194.3 K is the observed δ to γ phase transition point taken as the temperature of heat capacity peak 50.0 MPa.

determined. The δ - γ phase transition at 50.0 MPa took place at 194.3 K on heating in the actual experiment. The Gibbs energy against order parameter curves for both the δ and γ phases at the temperature and the pressure 50.0 MPa are shown in Fig. 13. The minimum free energy for the γ phase is definitely lower than that for the δ , contrary to the thermodynamic relation that the minimum values of free energies for the two phases should be equal to each other at the transition point. This means that the temperature of the heat capacity peak observed at 50.0 MPa is higher than the phase transition point as defined by the equality of the Gibbs energies; in other words, the substance in the δ phase at 194.3 K is in a superheated state.

Interpretation of an Anomalous Heat-capacity Peak. The phase diagram for ND₄Br (Fig. 6) has two peculiarities around the triple point among β , γ , and δ phases; one is the appearance of a new heat-capacity anomaly between the δ - γ and the γ - β phase transitions at pressures just below the triple point pressure, and the other is the apparent presence of two triple-points as shown by A and B. In this section the former phenomenon is discussed as the δ - β phase transition due to the coexistence of the δ and γ domains and of the superheating in the δ to γ phase change, the effects described above.

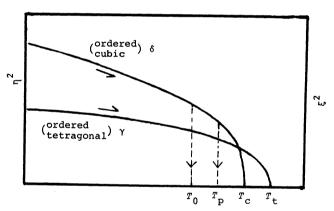


Fig. 14. Schematic temperature dependences of the order parameters for the δ - β and γ - β phase transitions in ND₄Br crystal at a certain constant pressure immediately below the triple point. T_0 : the temperature at which $G_\delta = G_\tau$, T_p : the δ - γ phase transition temperature, T_c : the δ - β phase transition temperature, T_t : the γ - β phase transition temperature.

Figure 14 illustrates diagramatically the path of transformation on heating as curves of order parameter versus temperature, where $T_{\rm o}$ is the temperature of equilibrium between the δ and γ phases at which the free energies for the two phases become equal, and $T_{\rm c}$ and $T_{\rm t}$ are the temperatures of the δ - β and the γ - β phase changes, respectively. Most of domains of the δ phase transform into the γ phase around $T_{\rm p}$ with the superheating effect as indicated by an arrows, and subsequently into the β phase at $T_{\rm t}$. But some of domains remain in the δ phase until the temperature $T_{\rm c}$ is reached, at which temperature they transform into the β phase directly. This fluctuational δ - β transition should become important as the pressure approaches

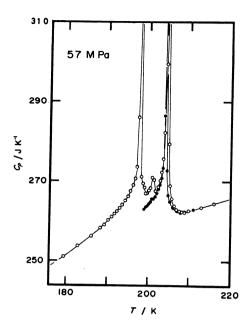


Fig. 15. The effect of thermal hysteresis on the heat capacity curve of ND₄Br crystal at 57.0 MPa. One series of measurement (———) was started at 100 K where the crystal was in the δ phase, and the other (————) was started at 198 K on the crystal in the γ phase after the treatment of the isothermal pressure increase from 0.101 to 57.0 MPa following the temperature decrease from room temperature to 198 K at 0.101 MPa.

that of the triple point, as the fraction of the substance, namely the number of domains, remaining in the δ phase accordingly increases till $T_{\rm c}$.

Figure 15 shows another experimental evidence for the above reasoning with the use of heat capacity curves at 57 MPa as an example, the heat capacity values being the total of contributions from the sample and cell measured in the heating direction. Two sets of data, distinguished by open and solid circles, differed from each other in the prehistories of the sample. The sample in the former case (open circles) was cooled down to liquid nitrogen temperature so as to start the measurement in the δ phase. In the latter, on the other hand, the temperature of the samples was first decreased from 300 K to 198 K at an atmospheric pressure, then the pressure was isothermally increased to 57.0 MPa, and then a set of measurement was started from there in the heating direction. The former sample at 199.5 K, being normally in the γ phase, would consequently still have involved some domains of the δ phase resulting in the anomalous peak at 200.9 K on the subsequent heating while the latter would have been composed of the γ phase and if any the β phase. The results combined with the different thermal-prehistories of the sample therefore indicates the effects of superheating and coexistence as causing the anomalous heat-capacity peak in the decisive way.

It should be pointed out that the extra heat capacity peaks occur practically at the same temperature 200.8—200.9 K even though one would expect the peak temperature to follow the extrapolation of the stable δ - β

phase boundary. This cannot be explained by the simplified domain model as discussed above. One would have to incorporate the possibility of distributed internal pressure felt by the less compact γ domains surrounded by the δ or β domains. The situation is, however, not clear at present.

Character of the γ - β Phase Transition around the Triple Point. As already pointed out there appeared two triple points, A and B in Fig. 6, on the phase diagram. The superheating of the δ - γ phase transition explains this unusual behavior of the phase lines (apart from the curvature of the γ - β line) in the close vicinity of the triple point. As we discussed above, the observed δ - γ phase boundary is at higher temperature than the equilibrium phase boundary by several Kelvin. The equilibrium δ - γ phase line which is assumed to be parallel to the observed phase line would then join the point A where the δ - β and γ - β phase boundaries meet thus terminating at a genuine triple point.

The γ - β phase line near the triple point A was found to deviate from a straight line (broken one in Fig. 6). This appears to be an equilibrium properties rather than a hysteretic effect related to the coexistence of the different domains, since the heat capacity measurement performed after approaching the triple point from the lower pressure gave essentially the same γ - β transition temperature. (See Fig. 15) The γ - β phase line is so curved that the β phase region is larger than the linear extrapolation of the γ - β phase line gives. This is explained if one notes that the two ionic interactions stabilizing the γ and δ phases are opposite in nature. The ionic interactions favoring the antiparallel orientation of the NH₄+ ions within the ab plane stabilizes the y phase and those favoring the parallel orientation The two interactions have the same the δ phase. strength in the opposite directions at the triple point. They tend to cancel each other resulting in relative stabilization of the disordered β phase, as is experimentally observed. Such fluctuational interaction among different phases does not occur at an ordinary triple point among a solid, liquid, and vapour. It is characteristic of a triple point involving phase transitions of the second kind. 19)

Concluding Remarks

The present results of heat capacity of $\mathrm{NH_4Br}$ and $\mathrm{ND_4Br}$ crystals evidenced again that the high pressure calorimeter described in the preceding paper has a satisfactory accuracy. The accurate measurements enabled the exact determination of p-T phase diagrams and the detailed examination of phase transitions to be performed under well specified thermodynamic conditions.

The peculiar phenomena observed at high pressures just below a triple point for ND_4Br crystal were reasonably explained in terms of the effects of superheating in the δ - γ phase transition and of coexistence of the δ , γ , and β phases domains (This is quite an instructive point in that the superheating effect causes a new phenomenon in some cases.). The nucleation and growth processes in the δ - γ phase transition is an interesting subject for

further study, as will be described in the subsequent paper. The detailed measurement of the δ - β phase transition line under high pressure (beyond the pressure range of the present apparatus) is desirable for the insight into the competitive interaction between the two different (parallel and anti-parallel) orderings in the disordered β phase.

References

- 1) R. Stevenson, J. Chem. Phys., 34, 1757 (1961).
- 2) C. W. Garland and R. A. Young, J. Chem. Phys., 49, 5282 (1968).
- 3) E. L. Wagner and D. F. Horning, J. Chem. Phys., 18, 305 (1950).
- 4) Y. Yamada, M. Mori, and Y. Noda, J. Phys. Soc. Jpn., 32, 1565 (1972).
- 5) M. Oguni, K. Watanabe, T. Matsuo, H. Suga, and S. Seki, *Bull. Chem. Soc. Jpn.*, **55**, 77 (1982).
- 6) C. W. Garland and C. F. Yarnell, J. Chem. Phys., 44, 1112 (1966).
 - 7) R. S. Seymour, Acta Crystallogr., Sect. A, 27, 348 (1971).
 - 8) Y. Yamada, Y. Noda, J. D. Axe, and G. Shirane, Phys.

Rev. B, 9, 4429 (1974).

- 9) C. Rotter and W. Kamitakahara, Phys. Rev. B, 14, 1983 (1976).
- 10) A. R. Cole, Doctoral Thesis, Massachusetts Institute of Technology, 1950.
- 11) M. Sorai, H. Suga, and S. Seki, Bull. Chem. Soc. Jpn., 38, 1125 (1956).
- 12) C. C. Stephenson and A. M. Karo, J. Chem. Phys., 48, 104 (1968).
- 13) W. Mandena and N. J. Trappeniers, *Physica*, **81B**, 285 (1976).
- 14) C. W. Garland, R. C. Leung, and F. P. Missel, *Phys. Rev. B*, **18**, 4848 (1978).
- 15) C. W. Garland, R. C. Leung, and C. Zahradnik, J. Chem. Phys., 71, 3158 (1979).
- 16) J. Frenkel, "Kinetic Theory of Liquids," Dover, New York (1955), p. 382.
- 17) A. R. Übbelohde, "The Molten State of Matter," John Wiley and Sons, New York (1978), p. 86.
- 18) A. Kosaki, M. Sorai, H. Suga, and S. Seki, Bull. Chem. Soc. Jpn., 50, 810 (1977).
- 19) L. D. Landau and E. M. Lifshitz, "Statistical Physics," 3rd ed, Pergamon Press, Oxford (1980), Part 1, p. 497.